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The objective of this study is to present an accurate and simple method to describe the motion 

of constrained mechanical or structural systems. The proposed method is an elimination method 

to require less effort in computing Moore-Penrose inverse matrix than the generalized inverse 

method provided by Udwadia and Kalaba. Considering that the results by numerical integration 

of the derived second-order differential equation to describe constrained motion veer away the 

constrained trajectories, this study presents a numerical integration scheme to obtain more 

accurate results. Applications of holonomically or nonholonomically constrained systems illus- 

trate the validity and effectiveness of the proposed method. 
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1. Introduction 

The motion of constrained systems is described 

by the simultaneous solution of unconstrained 

equations of motion expressed by the second- 

order differential equations and constraint equa- 

tions by algebraic equations. It is not easy to com- 

bine them and requires a lot of efforts to describe 

it. Most of analytical methods depend on numeri- 

cal approaches like Lagrange multiplier method. 

The Lagrange multiplier method relies on prob- 

lem-specific approaches to the determination of 

the multiplilei't is often difficult to obtain them and 

hence to obtain the explicit equations of motion 

for systems which have a large number of degrees 

of freedom and many non-integrable constraints. 
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The Gibbs-Appell  method (Gibbs, 1879; 

Appell, 1899) requires a felicitous choice of quasi- 

coordinates and is usually amenable to problem- 

specific situations. This approach is likewise dif- 

ficult to use, when dealing with systems having 

several tens of freedom and several non-integra- 

ble constraints. Kane (1983) introduced a method 

for nonholonomic systems based on the develop- 

ment of Lagrange equations from D'Alembert's 

Principle. Though his method is usally less tedi- 

ous than the computation associated with La- 

grange multipliers, it is difficult to compute vec- 

tor components of acceleration. It also gets more 

complicated with increasing numbers of degrees 

of freedom. Passerello and Huston (1973) mo- 

dified Kane's formulation by eliminating the 

computation of acceleration components. In their 

method, the establishment of supplementary equa- 

tions to eliminate arbitrary coordinates from con- 

straint equations may be difficult. 

Udwadia and Kalaba (1992) derived an ex- 

plicit equation of motion for constrained systems. 

They considered Gauss's Principle as the starting 
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point and relied on developments in the field of 

linear algebra, specifically, the development of the 

concept of Moore-Penrose generalized inverse. 

The advantage of their method is to explicitly and 

simply determine the constrained motion and the 

constraint forces. This method requires numerical 

calculation of m ×  n generalized inverse matrix 

for describing the motion of n-degree-of-free- 

dom system subjected to m constraints, m < n .  

Transforming the joint-space dynamics into the 

constraint-space model, You (1996), and You 

and Jeong (1998) presented a hybrid adaptive 

control law to simultaneously manipulate the 

end-effector position and the contact force. Park 

et al.(2000) presented a computational method 

for the motion of constrained systems by simulta- 

neously solving the acceleration constraint equa- 

tions and the equations of motion. This method 

considered the systems with the full rank of par- 

tial velocity matrix. 

There are an infinite number of accelerations 

to satisfy constraint equations that are functions 

of acceleration components to be obtained by 

differentiating holonomic or nonholonomic con- 

straints with respect to time. Constrained equa- 

tion of motion is derived by selecting one of them. 

Hence, starting from Gauss's principle, this study 

derives a matrix form of constrained equation of 

motion. Although the proposed method is derived 

by the similar process such as the generalized 

inverse method (Udwadia and Kalaba, 1992), the 

proposed method takes a kind of elimination 

form such as other analytical methods (Gibbs, 

1879 ; Appell,  1899 ; Kane, 1983 ; Passerello and 

Huston, 1973) and requires less effort in com- 

puting generalized inverse matrix than the genera- 

lized inverse method. By the elimination method, 

the constrained motion of n-degree-of-freedom 

system is described by m dynamical equations to 

include the effects of constraints and ( n - - m )  

unconstrained equations of motion. The results 

by numerical integration of  the derived second- 

order differential equation to describe constrain- 

ed motion veer away constrained trajectories and 

exhibit the errors in the satisfaction of constraints. 

This study provides a numerical integration sche- 
me to reduce the errors. Applications of holo- 

nomically or n'onholonomically constrained sys- 

tems illustrate the validity and effectiveness of  the 

proposed method. 

2. Equation of Constrained Motion 

Consider a dynamical system described in 

terms of an n-vector q =  [ql q2 "'" qn] r. Using the 

fundamental lemma of the calculus of  variations, 

Euler-Lagrange equations are derived as follows 

in terms of the Lagrangian L =  T -  V 

d [ a L ~  OL % 
d t \ ~ / - ~ = ~  ., i = l ,  2, .-., n (1) 

where T is the kinetic energy of the system and 

therefore a function of velocity qi, while V is 

the potential energy of the system and therefore 

a function of the coordinates qi. And the Q's 

denote generalized forces. 

Let the system be subjected to the following m 

constraints 

Gs(~, t ) = 0 ,  j = l ,  2, ..., m, m < n  (2) 

where ~ = [ q i  qz "'" qh] r, m<_h<n.  The 

generalized inverse method by Udwadia and 

Kalaba expressed the constraint equations (2) by 
the displacement vector space q =  [ql q2 "" qn] r. 

The constraint equations (2) satisfy at all times, 

and assuming that the constraint equations (2) 

are sufficiently smooth, the twice derivatives with 

respect to time t must also satisfy at all times. 

~ _ ~ OGj .. , & h 8 / OG~ \ . 
O" ~',j--l=l Oqt q"t-t~--'xr~--'l~r ~ Oq~t )qrq' 

D 

& O / OG3 \ . 

ot )Or+ 07C =° 

A ( ~ ,  ~l, t ) ~ l = b ( q ,  ~1, t) (3b) 

where A is m × h  matrix and b is m x 1  vector 
defined as 

[ 8G1 8G1 8GI ] 

A = /  i : "" 0Gin[ 8Gm aGm 
L ~ 8q2 8q~ jm×~ 

(4a) 
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= - - 2 " , 2 " , - - - -  qrqt 

h (9 / 3 G j \ .  h ~ / 3 Q \ .  3ZG~ (4b) 
-t2d~=l~(~]qt-~2"j'l~q~r ~ - ) q r  at 2 

j = l ,  2, ".., m 

The rank of matrix A is k, which k g m .  
Utilizing the fundamental theory of linear al- 

gebra, the general solution of A ~ = b  with respect 
to ~ can be expressed as 

~ = A + b  + ( I - A + A )  y (5) 

where ' + '  denotes the generalized inverse matrix 
and the vector y is an arbitrary vector. It can 
be shown that there are an infinite number of 
accelerations to satisfy equation (5). We need to 
select one of them to determine the constrained 
motion for the system. 

The dynamic equation (1) can be also written 
in terms of matrix form as 

M t i + C q + K q = Q  (t) (6) 

where M, C, and K are the n × n positive definite 
mass, damping, and stiffness matrices, respective- 
ly. 

Considering the acceleration vector ti of  equa- 
tion (6) in partitioned form of h accelerations ti 
a corresponding to ~ of equation (3) and the rest 
( n - h )  accelerations ~b, it can be written as 

[ M.~ Mab] 

where 

W.-- -  (e~.q+C.~q~+~.q~+I~q~-Q~) (aa) 

Wb = -  (Cbs/l+Cbbtlb+Kbaqa+Kbbqb--Qb) (8b) 

The second equation of equation (7) gives the 
relation 

iib = - M ~  (Mb~i.--  Wb) (9) 

Substituting equation (9) into the first equation 
of equation (7) and arranging it, we obtain 

M*e i ,=R  (10) 

where 

• _ - 1  M, -- M~8-  MabMbbMba ( 1 1 a) 

R = - M.bMg~W~ + W .  ( l 1 b )  

By Gauss's principle, the actual accelerations of 

constrained systems can be obtained by the least 
square of the acceleration difference between ~ of 
equation (5) and i~i8 of equation (10) with a 
weighting matrix M~ expressed as 

G = I~ - q a J  rM* Ill- qa] (12) 
- -  ~ M *  112"::" ~ f f * l / 2 . .  2 
- -  XVia q--~Wa qa 2 

In order to utilize equations (3b) and (10) into 
equation (12), they are modified by 

Au*-llZ~*L/2~ _ i .  (13a) ±vLa ~vLa q - - ~  

and 

ti~ = (MT~) -1R = a ,  (13b) 

respectively. 
The general solution of equation (13a) with 

respect to M,'112£1 gives 

M * ' 2 ~  = ( A M  *-'2)  ÷b 
+ E l -  (AM *-1~2) +(AM *-'2) ]s  (14) 

where s is an arbitrary vector. Substitution of 
equations (13b) and (14) into equation (12) 
leads to the relation 

i,1/2.~ _ _  ( A ] ~ * - l l 2 ' t  +k 
(15) 

+ [I -- (AM* - ' z )  ÷ (AM *- 'z)  ] s 

Solving equation (15) with respect to the arbitra- 
ry vector s, it gives 

s =  [M *1/2- (AM *-1/2) +AJa,  
- (AM *-1/2 ) ÷ (AM *-~2) z (16) 

where z is another arbitrary vector. Substituting 
equation (16) into equation (14) and utilizing 
the fundamental properties of generalized inverse 
matrix, it gives 

i , l /2X ]~tff * 1 / 2 ~  -I-  q= , , . 8  , , ~ . ( A M ~  *-'2) ( b - A a ~ )  (17) 

Premultiplying equation (17) by M *-'2, it gives 

(l=a~ + M~ *- 'z  (AM* -1/2) ÷ (b - A a ~ )  (18) 

Thus, the equation of motion for constrained 
systems can be described by solving the simulta- 
neous solution of ( n - h )  equation (9) and h 
equation (18). Premultiplying equation (18) by 
M~, the second term of the righthand side of the 
result defines the constraint forces, F c, expressed 
a s  
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FC- -M~ ' J2 (AM*- l l z )+ (b -Aaa )  (19) 

The constrained dynamic equation (18) is com- 

posed of  the sum of the the dynamical equation 

(13b) and the constraint force vector (19) pre- 

multiplied by M *-1. Equation (19) indicates that 

the constraint force vector is expressed as the 

product of the variation in acceleration trajec- 

tory due to the presence of constraints and the 
weighting matrix M,  *ltz (AM *-1/2) +. It can be also 

shown that the constraint forces act in the h dis- 

placement components included in the constraint 

equations (2) and do not act in the ( n - h )  dis- 

placement components. Hence, this approach is 

the method to eliminate the displacement com- 

ponents not to be included in constraints and 

requires less effort than the generalized inverse 

method to compute the constraint forces of n 

components. If the given constraints are functions 

of n displacement components, this approach 

exactly corresponds to the generalized inverse 

method. 

By the similar process as the previous deriva- 

tion, the constrained motion for nonholonomic 

systems can be obtained. Let us assume that the 

dynamic system expressed by equation (6) is 

subjected to r nonholonomic constraints 

Gt(4,  q, t) =0 ,  l = 1 ,  2, " ' ,  r ,  r < n  (20) 

where 4 = [01  02 "'" Oo]r, ~ = [ q ,  qz "'" qpjr, 

o ~ n ,  P<-n. The first derivatives of equation 

(20) with respect to time t can be written in form 

of equation (3b), where the coefficient matrices 

are derived as 

I ac, ac, oc, ] [ ac, l 
NTl d2 O° I_ I H- 

I "" Di: , b =  i A =  i ~ • 
OG, OG, OG, I OG, ~ 

La41 002 aOo j,xo [ ~ - - q  lx1 

(21) 

Utilizing the coefficient matrices of equation (21) 

and the dynamical equation (6) into equation 

(18), the constrained equation of motion for non- 

holonomic systems can be obtained. The con- 
straint forces only act in the o velocity com- 

ponents included in the constraint equations 

(20). Hence, the proposed method describes the 

constrained equation by eliminating the velocity 

components not to be included in constraint equa- 

tions and can save the computation of  generalized 

inverse matrix. The following applications illus- 

trate the validity of the proposed method. 

3. Application I 

Let us consider the dynamical motion of the 

system presented by Appell  in 1911. The uncon- 

strained equations of motion of the system are 

given by 

m 2 = F x ,  rny=Fy ,  m 2 = F z  (22) 

where Fx, Fy and F ,  are the given forces. Assume 

that the system is subjected to a holonomic con- 

straint given as 

x 2 + yZ = f  (t) (23) 

Differentiating the constraint equation (23) twice 

with respect to time, it can be written in the form 

A(1 = b ,  where 

A=E2x  2y], ~1=[2 y] r ,  b = f ( / ) - 2 2 2 - 2 3 ~  2 (24) 

Substituting equations (22) and (23) into equa- 

tion (19) and utilizing the fundamental linear 

algebra, the constraint forces Fx c and F c in the x 

and y components are calculated as 

FFxcl [m 1/2 0]/ [ m-l/2 0 " 2 2  
LF;J=[o m@2'l[o m',' s-2x-2y-[2x2y] (25) 

2xZ+2y z my r~ 

Accordingly, the constrained equation of motion 

of the system to be composed of the third equa- 

tion of equation (22) and equation (25) is writ- 

ten as 

(26) 
m~ L F~ ] 

The constraint forces by the generalized inverse 

method are calculated as 
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I ,,.20 ]] m,= ° / 

The solution of equation (27) leads to the same 

results as equation (25) with f c = 0 .  Consequent- 

ly, the same equation of motion for this con- 

strained system is obtained. Through this simple 

example, it is observed that the proposed method 

performs the reduced computation of generalized 

inverse matrix as the result of the elimination of 

displacement components. 

Replacing the holonomic constraint (23), as- 

sume that the system is subjected to a nonholo- 

nomic constraint 

2z+pz=f (t) (28) 

Differentiating equation (28) once with respect 

to time and substituting the result and equation 

(22) into equation (19), the constraint forces are 

calculated as 

and the constrained equation of  motion is easi- 

ly calculated by substituting equation (29) into 

equation (18). This application verifies that the 

constrained motion of nonholonomic system is 

efficiently obtained by the proposed method. 

4. Applietion II 
A three-joint  l ink robot 

Y 

H~Sinct~t 
C ~ 1 3 , m 3  "[3 

Fig. 1 A three-joint link robot 

The equation of motion for this system is derived 

by Newtonian or Lagrangian mechanics as 

[A, ~,C,,~,C,,I[~,] [ o ~,s,,-~s4¢,] 
/ 

Cl+C, - c ,  o ]lo,] 
+ -c, c,+c,-C~llO, I 

o -C3 C3 J[t)3J 

+ - ~  ~+~-~/ /~/+/~c~/=/P~/  
o -/G /G JLO3J [G~cos &j [Fq 

(30) 

where 

Al= Ii + ( ~ +  mz + ml ) ll 2 

A2=I2+(~+m3)l~,  A s = I 3 + ~  l~ 

Consider a three-joint link robot shown in 

Fig. 1 moving in the XY-plane.  Rigid bar 1 has 

length /1, mass rnl, and moment of inertia It. Bar 

2 has x2, m2, and /2, and bar 3 has/3,  m3, and /3. 
Figure 1 shows a rotational spring and a dashpot 

at each joint, and shows known or unknown 

disturbances acting on the system. K1, K2, a n d / ~  

denote spring stiffnesses, and C1, C2, and Cs are 

damping coefficients. This system is a highly 

nonlinear system described by q ( t )  = [01 02 03] r. 

Bx=( m~+m3)lll2 

m3 1113, m3 &13 B~=~- B3=~- 

G,=( ~-+m2+m3)gll 

G2=(~+ma)gl2 ' ma G3=~- gl~ 

C , j  = c o s  ( 8 , -  Os), S ~  = s i n  ( O~ - Os) 
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P l = F l l x s i n  alt  cos O~-F2lx s in  flxt sin 0 
+ Hzlx sin a2t cos Ox-H2l l  sin/~2t sin 01 

P , = H t l  sin a~t cos &-H2/2 sin/32t sin 02, 

P3=0 

Let the Cartesian coordinate of end-effector be 
(xe, ye). The coordinate is converted into La- 
grangian coordinates such as 

x~ (t)  =/1 cos 01 + & cos & + & cos & 
(31) 

ye ( t )  = 11 sin 0~+ 12 sin & +  13 sin & 

Assume two constraints so that the end-effector is 
constrained to move in the clockwise direction 
along an elliptic path in the XY-plane described 
by the equations 

x~ (t)  - (x~ (o) + a) = a cos  ( x -  a t )  

and (32) 

y~( t )  --ye(0) = b  s i n ( x - a t )  

where a, b, and a are semi-major axis, semi- 
minor axis, and rotational speed of the end- 
effector about center of  ellipse, respectively. Sub- 
stituting equations (31) into the constraint equa- 
tions (32), and differentiating them twice with 
respect to time t, the matrix A is written by 

A = [ / x s i n 0 ,  & s i n &  / 3 s i n ~ J  (33) 
L/1 cos 01 l~ cos &/3  cos 

and the vector b is given by 

b r  0 -i2co  &Ol+adcos(x-at)] 
=[-Ilsin OjO~-12sin 020~-/3sin &Ol+bdsin(x-at) j (34) 

The initial positions were selected by the values 
to satisfy both static equilibrium positions and the 
constraints. 

6~ (0)=2.0439 tad., t~(0)=1.3862 tad., &(0)=0.8428 tad. 

0~(0) =0.5 rad./sec., 02(0)=1.5579 rad./sec., 03(0)=3.2017 rad./sec. (35) 

The values of constants a, b, and a of 0.3, O.1, 
and 5.0, respectively, were selected, and Table 1 
gives the other values of the system. Also, assume 
the values of the constants in the disturbance term 
such as 

F,=50N, Fz=20 N, H,=I0 N, H~=I00N 
(36) 

0ft=3 r ad./ sec., az=l rad./ sec., fix=5 r ad.l sec., /~= 3 rad./ sec. 

The disturbances with these values may be large 
enough to excite the system. 

The motion of the system is obtained by nu- 
merically integrating the second-order differential 
equation derived in this study. Figure 2 shows 
the constrained motion of the end-effector. It can 
be observed that the constrained motion is ex- 
plicitly described through the numerical integra- 
tion of the differential equation. The constrained 
motion is described in the state of natural equi- 
librium by providing the constraint forces to sa- 
tisfy the given constraints. Figure 3 represents the 

Table 1 Properties of the robot system 

_l mi(kg) /i(m) /i(kg.m 2) Kt(N/rad.) C,(N.seclrad.) 

1 30 1.1 2.5 100 6 

2 30 1.1 2.5 100 6 

3 10 0.5 0.13 30 3 

3 

end-effector in the y direction 
, f - ,  /~\j~,_/-~_2/-,\/" ~ .  2.5 X\ ,/ \, , 

m 
o 

1[ end-effector in the x direction o LO, 
0 

0 1 2 3 4 5 6 7 e 9 !0 
T~me(second) 

Fig. 2 Response of end-effector 

15 

10 

8 

0 1 2 3 4 '5 6 7 
~me(second) 

Fig. 3 Constraint forces at the joint 3 

9 10 
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constraint forces at the joint  3 to be required for 

keeping the constrained motion of this system. It 

is verified that the constraint forces can explicitly 

be determined without depending on any multi- 

plier methods. 
The validity of the proposed method can be 

investigated by computing the errors in the satis- 

faction of the given constraints. Figure 4 shows 

the errors in the satisfaction of the constraints 

defined as 

Error 1 = x e ( t )  - -  (xe(0) + a )  - a  cos 0 r - - a t )  
(37) 

Error 2 =Ye (t) -- Ye (0) -- b sin ( z r -  at)  

The values calculated by proper integration sche- 

me must satisfy the given constraints during nu- 

merical integration. However, the figure shows 

g~ 
W 

-10 

2 

0 

- 2  

-4 

W -8 

-10 

~12 

-14 

x 10 ,3 
2 - - ,  

i i i i i i i 

1 2 3 4 5 6 7 

T ime(second)  

(a) Error 1 

\ 
\ 

\ 

8 9 10 

- 1 6  

Fig. 4 

\ 
\ 

i t i i i i i i t 

1 2 3 4 5 6 7 8 9 10 
~me(second) 

(b) Error 2 

Errors in the satisfaction of the constraints 

that the errors in the satisfaction of  the constraints 

increase with time and the numerical values de- 

viate the constrained path. Without considering 

any method to pull the deviated path into the 
constrained path, the calculated results will veer 

away the constrained path. Thus, a numerical 

integration scheme to reduce the errors is intro- 

duced in the following. 

5. Numerical Integration Scheme 

The second-order differential equation can be 

rewritten as two sets of first-order differential 

equations for numerical integration. The pro- 

posed second-order differential equations can be 

written as 

qbJ =[~eb (t) ] (38a) 

=L  - M ; ~  (N~b~a--W,) ] (38b) 

The previous work (Eun et al., 2003) exhibited 

that the errors in the satisfaction of constraints 

come from the ignorance of the constraint equa- 

tions and their first differential equations with 

respect to time t. The two sets of first-order dif- 

ferential equations were modified by inserting the 

first derivative of holonomic constraint (2) with 

respect to time or nonholonomic constraint (20) 

into the newly developed integration scheme. The 

first derivative of equation (2) with respect to 

time and nonholonomic constraints can be writ- 
ten in matrix form 

Dmxh~thxl=Sm×l (39a) 

Er×o~o×l=Wr×l (39b) 

respectively. There are an infinite number of solu- 

tions with respect to the actual velocity ~ and 
of equations (39). Under the fundamental as- 

sumption that Nature chooses the minimum value 

of all velocities to satisfy constraints of equations 

(39), the least square method was utilized. Tak- 
ing the least square of the difference between ~a of 

equation (38a) and, ~1 and ~ of equations (39) 

with a weighting matrix t t  and following the 
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similar procedure as the derivation of equation 

(18), equation (38a) for holonomic systems and 

equation (38b) for nonholonomic systems are 0 

developed as 
-2 

I ~1 ] -  [ ~a (t)+ H-1/2 (DH-1/2)+ (s +D~a) 1 (40a) 
I ~ l b J  - -  L ~b (t) ~ .4 

UJ 

43 

respectively, where H is a positive definite matrix. 

Applying this modified scheme to the three- -10 

joint  link robot, the matrix D and vector s can be 

derived as 

I / l s i n 0 t  12sin0z l a s i n ~ l  
D =  /1 cos 01 & cos & /3 cos 

and (41) 

- a a  s i n ( a - - a t )  ] 
s =  - b a  c o s ( : r - a t )  

respectively. 

Utilizing the coefficient matrix D and the vec- 

tor s of equation (41) into equation (40a), and 
-14 

assuming the weighting matrix H of a unit matrix, 

the modified two sets of first-order differential -1~ 

equations can be obtained. Taking the numerical 

integration to utilize MATLAB version 5.1 on a 
PC Pentium III, Figure 5 represents the errors in Fig. 5 

the satisfaction of the constraints. As shown by 

the figure, the errors are drastically reduced but 

do not absolutely disappeared. It is indicated that 

the errors in the satisfaction of constraints can 

be reduced by considering the first as well as 

second derivatives of holonomic constraint equa- 

tions with respect to time in the constrained equa- 

tion of motion. However, it is shown that the 

magnitude of the errors depends on the selection L~ 

of the weighting matrix. Figure 6 exhibits the 

errors in the satisfaction of the constraint (32) 

according to three different weighting matrices: 0 

diag(I1 1 1]), diag([7 3 7]) ,  and diag([1 3 5]). 

The figure indicates that the magnitude of the -1 

errors is affected by the weighting matirx and 

it is important to properly select the weighting Fig. 6 

matrix. 

x 10 z 
2 

proposed method 

\ 
\ 

Time(second) 
(a) Error l 

x 10 4 
2 . . . . .  

0 - - " proposed method 

"x 

-12 \ .  \ 

i i i * i i i i i 
1 2 3 4 S 6 7 8 9 10 Time(second) 

(b) Error 2 

Errors in the satisfaction of the constraints by 
proposed method 

x 10 4 

43 5 f . . . . . . .  ~ ~'/ dia:([7 3 ;]). . . .  diag([1 3 5]) 1 "¢1 " 

i i i i i i i i i 
1 2 3 4 5 6 7 8 9 10 Time(second) 
Errors according to three different weighting 

matrices 
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6. Conclusions 

This study presented an efficient method to 

describe the motion of constrained mechanical or 

structural systems. The proposed method took a 

kind of elimination form to be able to alleviate 

the calculation of generalized inverse matrix than 

the generalized inverse method provided by Ud- 

wadia and Kalaba. The errors in the satisfaction 

of constraints caused by numerical integration of 

the proposed differential equation resulted from 

the ignorance of the holonomic constraint equa- 

tions and their first differential equations with 

respect to time t or nonholonomic constraints. 

This study proposed a numerical integration sche- 

me to reduce the errors by inserting the first 

derivatives of holonomic constraint equations 

with respect to time or nonholonomic constraints 

in the constrained equation of motion. Also, it 

was observed that it is necessary to properly select 

the weighting matrix for reducing the errors and 

the errors are not perfectly damped out. The 

description of the constrained motion of several 

systems illustrated the validity of the proposed 

method. 
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